Example of processing and analyzing big data using Spark in Python

 Example of processing and analyzing big data using Spark in Python



from pyspark.sql import SparkSession


# Create a SparkSession object

spark = SparkSession.builder.appName("BigData").getOrCreate()


# Load the data from a CSV file

data = spark.read.csv("data.csv", header=True)


# Select the relevant columns

columns = ["column1", "column2", "column3"]

data = data.select(columns)


# Filter the data based on a condition

data = data.filter(data.column1 > 0)


# Group the data by a column and aggregate the values

data = data.groupBy("column2").agg({"column3": "sum"})


# Write the processed data to a file

data.write.csv("output.csv", header=True)

No comments:

Post a Comment

The Importance of Cybersecurity in the Digital Age

 The Importance of Cybersecurity in the Digital Age Introduction: In today's digital age, where technology is deeply intertwined with ev...